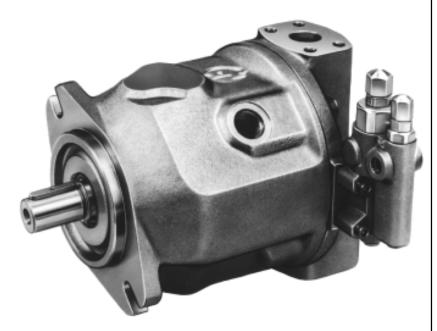
MANNESMANN REXROTH

Brueninghaus Hydromatik

Variable Displacement Pump AA10VSO

Series 31, Industrial Model, for Open Circuits Axial piston, swashplate design

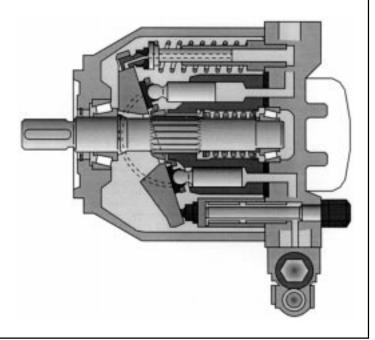
Axiai piston, swasnpiate design


Sizes 28...140

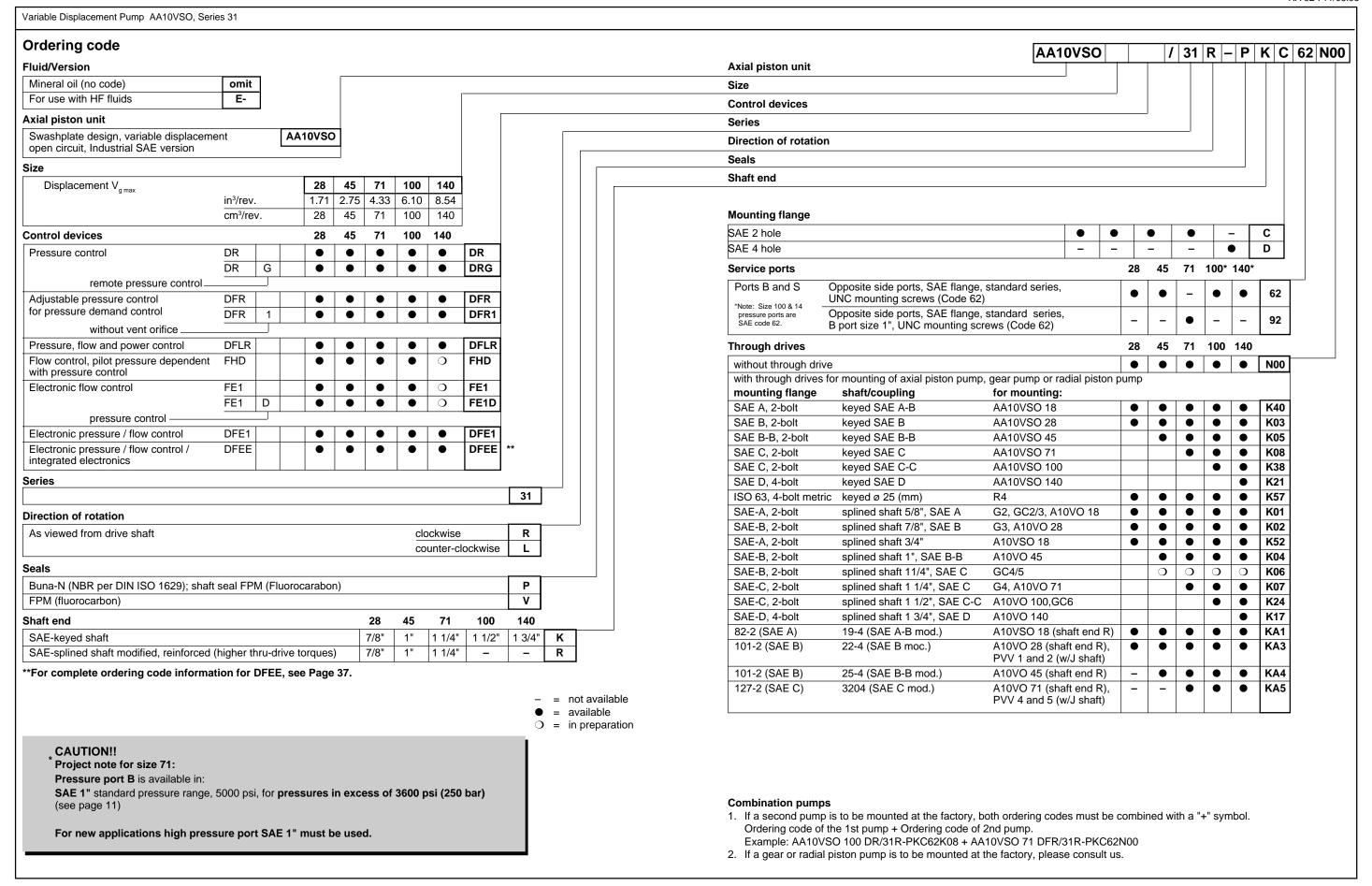
Nominal pressure 4000 psi (280 bar)

Peak pressure 5100 psi (350 bar)

RA 92 711/05.95


replaces 03.93

Variable displacement, axial piston pump AA10VSO of swashplate design is designed for hydrostatic transmissions in open circuits.


Flow is proportional to the drive speed and the displacement. By adjusting the position of the swashplate a stepless variation of the flow is possible.

- SAE mounting flange and shaft
- flange connections SAE
- 2 case drain connections
- good suction characteristics
- permissible continuous operating pressure 4000 psi (280 bar)
- low noise level
- long service life
- axial and radial loading of drive shaft possible
- high power/weight ratio
- wide range of controls available
- short response times
- optional through drive for combination pumps

Hydraulic fluid

The AA10VSO pumps in the standard design, should be used with good quality, petroleum oil based, anti-wear hydraulic fluids. More detailed information regarding the selection of hydraulic fluids and their application limits can be found in our Data Sheets RA 90 220 (Petroleum Oil), RA 90 221 (Biodegradable Fluids) and RA 90 223 (Type HF–Fire Resistant/Synthetic Fluids).

When operating with environmentally compatible fluids (Biodegradable) or Fire Resistant (Type HF synthetic fluids) possible reduction of the operating specifications may be required.

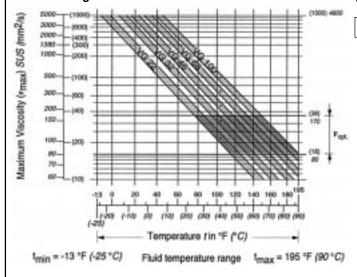
Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

Optimum Viscosity (v_{opt}) 80...170 SUS (16...36 mm²/s)

Viscosity limits

The limiting values for viscosity are as follows:


Absolute Minimum Viscosity (v_{min}) 60 SUS (10 mm²/s) for short periods at max. permissible leakage oil temperature $t_{max} = 195^{\circ}$ F (90° C)

Maximum Viscosity (v_{max}) 4600 SUS (1000 mm²/s) for short periods during cold start-up

Temperature range (see Selection Diagram)

$$t_{min} = -13^{\circ} F (-25^{\circ} C)$$

 $t_{max} = +195^{\circ} F (+90^{\circ} C)$

Selection diagram

Notes on hydraulic fluid selection

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that, within the operating temperature range, the fluid viscosity is within the optimum range ν_{opt} (see shaded area of the selection diagram). We recommend that the higher viscosity grade is selected in each case.

Example: At an ambient temperature of X° , the operating temperature in the reservoir is 140°F (60°C). In the optimum operating viscosity range v_{opt} , (shaded area), this corresponds to viscosity grades VG 46 or VG 68, VG 68 should be selected.

Important: The leakage fluid (case drain fluid) temperature is influenced by pressure and speed and is typically higher than the circuit temperature. However, maximum temperature at any point in the system must be less than 195 °F (90°C).

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperature, please consult us.

Filtration of the hydraulic fluid (axial piston unit)

In order to garantee reliable function, the operating fluid must be maintained to a minimum cleanliness level of

9 to NAS 1638 6 to SAE 18/15 to ISO/DIS 4406

This is achievable, for example, using filter elements type ...D020 (see RA 31278). This gives a filtration quotient of fitted

 $\beta_{20} \ge 100$

Mechanical stroke limiter

Mechanical stroke limiter is standard for the non-through drive version (N00). It is not possible in combination with through drive.

 \mathbf{Q}_{max} : with sizes 28 to 140

adjustment range $V_{q max}$ to 50 % $V_{q max}$

 \mathbf{Q}_{\min} : with sizes 100 to 140

adjustment range $V_{q min}$ to 5 0% $V_{q max}$

Technical data

(valid for operation with petroleum oil; for biodegradable fluids, see RA 90 221; for water based and other fire resistant fluids see RA 90 223)

Operating pressure range - Inlet side

Absolute pressure at port S (suction inlet)

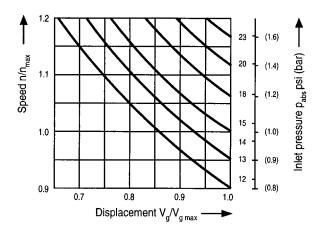
P _{abs min} ————	12 psi (0.8 bar)
n	435 psi (30 bar)
P _{abs max}	

Operating pressure range - Outlet side

Pressure at port B

Nominal pressure p_N_ __ 4000 psi (280 bar) Intermittent pressure (10% of duty cycle) 4600 psi (315 bar) _ 5100 psi (350 bar)

Applications with intermittend operating pressure up to 4600 psi (315 bar) at \leq 10 % of duty cycle are possible.


Direction of flow:

S to B.

Case drain pressure

Maximum permissible pressure of leakage fluid (at port L, L,): Maximum 7 psi (0.5 bar) higher than the inlet pressure at port S. but not higher than 30 psi (2 bar).

Determination of inlet pressure $\mathbf{p}_{\mathrm{abs}}$ at the suction port S, or the reduction in output flow for increasing speed.

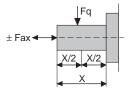


Table of values (theoretical values, without considering η_{mh} and η_{v} ; values rounded)

				- 211111 - V					
Size					28	45	71	100	140
Displacement			$V_{g max}$	in³ (cm³)	1.71 (28)	2.75 (45)	4.33 (71)	6.10 (100)	8.54 (140)
Max. Speed 1)		at V _{g max}	n _{o max}	rpm	3000	2600	2200	2000	1800
Max. permissible speed (speed limit) dependent on inlet pressure p_{abs} or reduced displacement $V_a < V_{a max}$			n _{o max perm.}	rpm	3600	3100	2600	2400	2100
Max. Flow		at n _{o max}	Q _{o max}	gpm (L/min)	22 (84)	31 (117)	41 (156)	53 (200)	67 (252)
		at n _E = 1800 rpm	Q	gpm (L/min)	13.3 (50)	21.4 (81)	33.8 (128)	47.6 (180)	67 (252)
Max. Power		at n _{o max}	P _{o max}	Hp (kW)	51 (39)	72 (55)	96 (73)	124 (93)	156 (118)
$\Delta p = 4000 \text{ psi } (2)$		at $n_E = 1800 \text{ rpm}$	Р	Hp (kW)	31 (24)	50 (38)	79 (60)	111 (84)	156 (118)
Max. Torque Δp	= 4000 psi (280 bar)	q max	T _{max}	lb-ft (Nm)	91 (125)	146 (200)	230 (316)	324 (445)	453 (623)
Torque $\Delta p = 145$	60 psi (100 bar)	at V _{g max}	T	lb-ft (Nm)	33 (45)	53 (72)	83 (113)	117 (159)	164 (223)
Moment of inerti	ia about drive axis		J	lb-ft ² (kgm ²)	0.0403 (0.0017)	0.0783 (0.0033)	0.1970 (0.0083)	0.3963 (0.0167)	0.5743 (0.0242)
Filling volume (c	ase)			gal (L)	0.2 (0.7)	0.26 (1.0)	0.4 (1.6)	0.6 (2.2)	0.8 (3.0)
Approx. weight (without fluid)			m	lbs. (kg)	33 (15)	46 (21)	73 (33)	99 (45)	132 (60)
Max. Force on	Max. permissible ax	ial force	F _{ax max}	lbs.f. (N)	225 (1000)	337 (1500)	540 (2400)	900 (4000)	1080 (4800)
drive shaft	Max. permissible ra	idial force	F _{q max}	lbs.f. (N)	270 (1200)	337 (1500)	427 (1900)	517 (2300)	630 (2800)

¹⁾ These values are valid for an absolute pressure of 14.5 psi (1 bar) at the suction port S. By reducing the output flow or increasing the input pressure, the speed can be increased as shown in the diagram.

Application of forces

Calculation of size

Output Flow
$$Q = \frac{V_g \bullet n \bullet \eta_v}{231} \text{ gpm} \qquad \left(Q = \frac{V_g \bullet n \bullet \eta_v}{1000}\right) \text{ L/min}$$
Output
$$T = \frac{V_g \bullet \Delta p}{24 \bullet \pi \bullet \eta_{mh}} \text{ lb-ft} \qquad \left(T = \frac{1.59 \bullet V_g \bullet \Delta p}{100 \bullet \eta_{mh}}\right) \text{ Nm} \qquad \begin{array}{c} V_g = \text{Geometric displacement - in}^3 \text{ (cm}^3) \text{ per rev.} \\ \Delta p = \text{Pressure differential - psi (bar)} \\ n = \text{Speed (rpm)} \\ n_v = \text{Volumetric efficiency} \\ \eta_{vh} = \text{Mechanical-hydraulic efficiency} \\ \eta_{th} = \text{Total effic$$

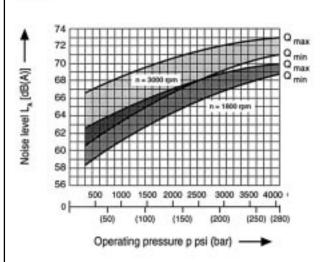
Input Power

Installation notes

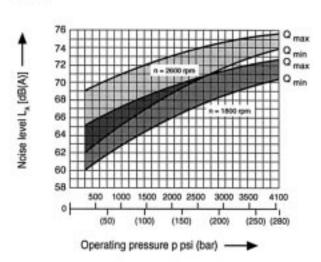
Installation position is optional. The pump housing must be filled with fluid both when commissioning and in operation. In order to achieve low noise level, all connecting lines (suction, pressure, and drain lines) are to be isolated from the tank by flexible members.

A check valve in the drain lines should be avoided. In individual cases, this may be possible, please enquire.

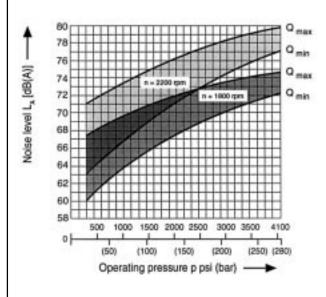
Operating curves for pump with constant pressure control DR

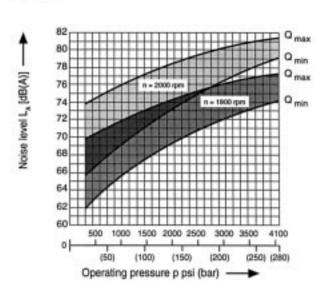

Noise leve

Measured in an anechoic chamber to DIN 43635 Distance from microphone to pump = 3.3 ft (1 m)


Measuring error ±2 dB (A)

Fluid used: petroleum oil to ISO VG 46 DIN 51519; temperature = 122°F (50°C)


Size 28

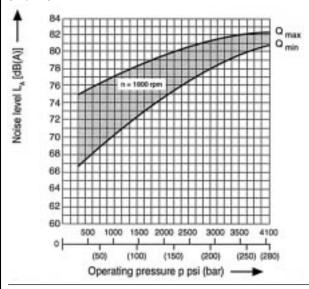

Size 45

Size 71

Size 100

Operating curves for pump with constant pressure control DR

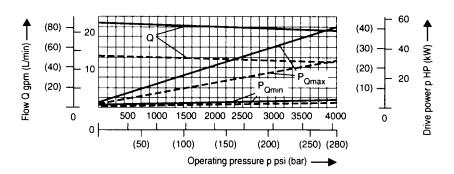
Noise level


Measured in an anechoic chamber to DIN 43635

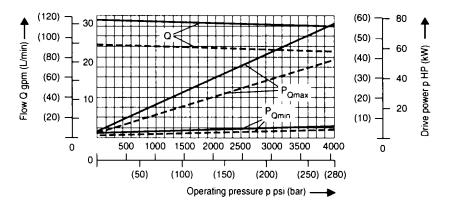
Distance from microphone to pump = 3.3 ft (1 m)

Measuring error ±2 dB (A)

Fluid used: petroleum oil to ISO VG 46 DIN 51519; temperature = 122°F (50°C)


Size 140

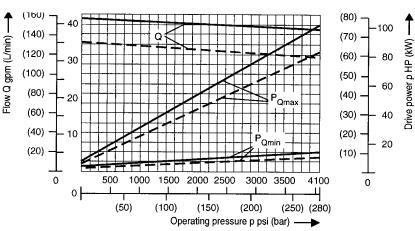
Drive power and output flow


(Fluid: petroleum oil to ISO VG 46 DIN 51519, temperature $t = 122^{\circ}F$ (50°C)

---- n = 1800 rpm ---- n = 3000 rpm

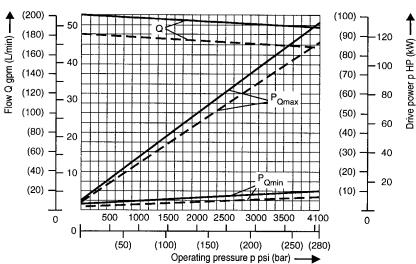
Size 45

---- n = 1800 rpm _____ n = 2600 rpm

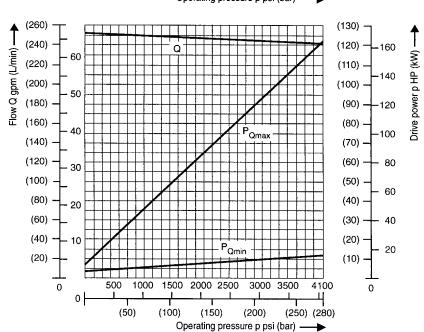


Drive power and output flow

(Fluid: petroleum oil to ISO VG 46 DIN 51519, temperature $t = 122^{\circ}F$ (50°C)


Size 71

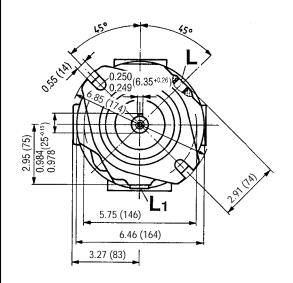
---- n = 1800 rpm ----- n = 2200 rpm

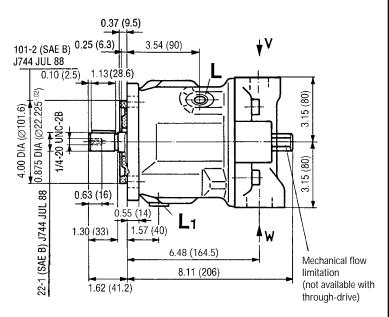

Size 100

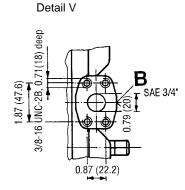
---- n = 1800 rpm ----- n = 2000 rpm

Size 140

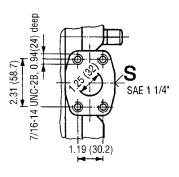
___ n = 1800 rpm


Total efficiency:

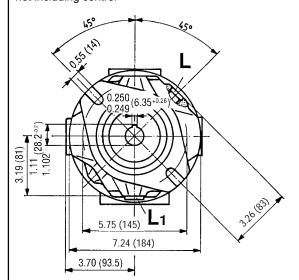

$$\eta_t = \frac{Q \cdot p}{P_{Q \text{ max}} \cdot 1714} \left(\frac{Q \cdot p}{P_{Q \text{ max}} \cdot 600} \right)$$

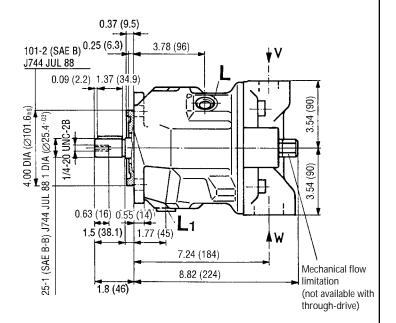

Volumetric efficiency:

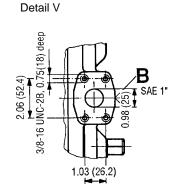
$$\eta_{v} = \frac{Q}{Q_{theor.}}$$

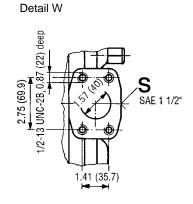

Model N00 (without through drive) not including control

Detail W

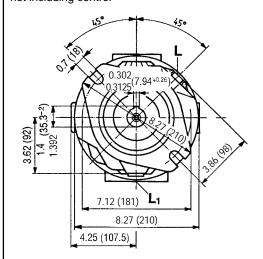


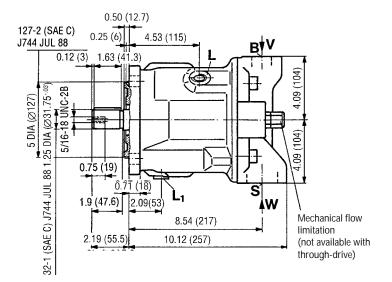

- Pressure port Suction port
- 3/4" SAE 1 1/4" SAE


(standard pressure series, Code 61) (standard pressure series)

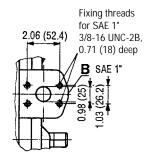

L/L, Case drain ports SAE-8; 3/4 - 16 UNF - 2B (L, plugged at factory, Code 61)

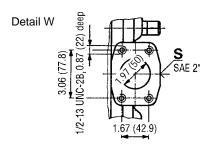
Model N00 (without through drive) not including control





B Pressure port 1" SAE (standard pressure series, Code 61 – 5000 psi)


S Suction port 1 1/2" SAE (standard pressure series)
L/L, Case drain ports SAE 10; 7/8 - 14 UNF - 2B (L, plugged at factory, Code 61)


Model N00 (without through drive) not including control

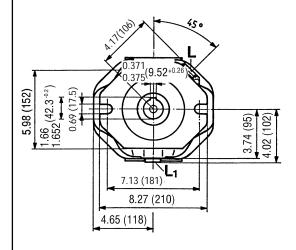
Portplate 92 (1" - 5000 psi) Detail V

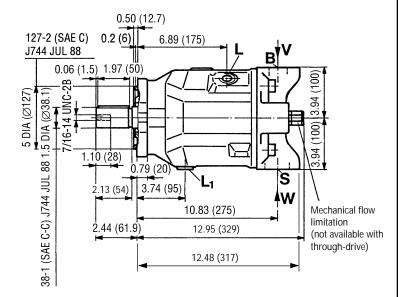
Pressure port 1" SAE - 5000 psi

S

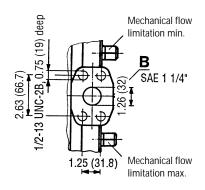
Suction port L/L, Case drain ports 2" SAE

SAE 10; 7/8 - 14 UNF - 2B

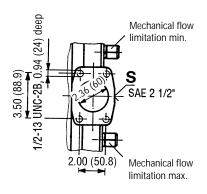

(standard pressure series, Code 61)


(standard pressure series) (L, plugged at factory)

CAUTION!!

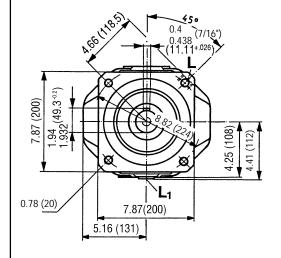

At pressure port B there is one optional SAE mounting available, Portplate code 92 SAE 1" standard pressure series, 5000 psi, for pressures in excess of 3600 psi (250 bar). For operating pressures in excess of 3600 psi (250 bar) or for new projects an SAE 1" pressure flange should be used.

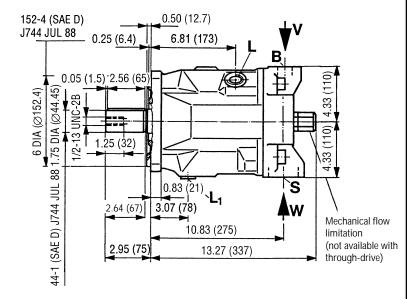
Model N00 (without through drive) not including control



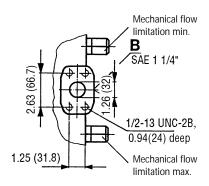
Detail V

Detail W

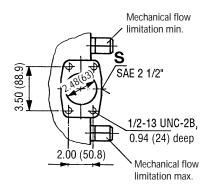

B Pressure port 1 1/4" SAE – 6000 psi


Suction port 2 1/2" SAE /L, Case drain ports SAE 12; 1-1/16 - 12UN - 2B

(high pressure series, Code 62) (standard pressure series, Code 61)


(L₁ plugged at factory)

Model N00 (without through drive) not including control



Detail V

Detail W

B Pressure portS Suction port

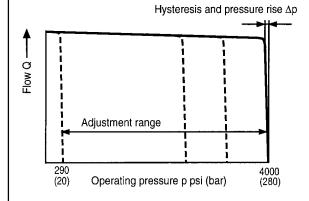
L/L, Case drain ports

1 1/4" SAE - 6000 psi

2 1/2" SAE

SAE 12; 1-1/16 - 12UN - 2B

(high pressure series, Code 62) (standard pressure series, Code 61)

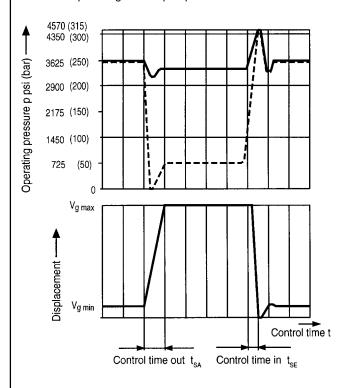

(L, plugged at factory)

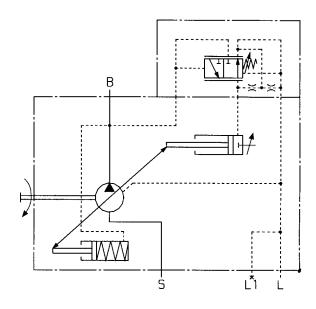
DR Constant pressure control

The constant pressure control pressure compensation, serves to maintain a constant pressure in a hydraulic system, within the control range of the pump. The pump therefore supplies only the amount of hydraulic fluid required by the services. Pressure may be steplessly set at the pilot valve.

Static operating curve

at $n_1 = 1500 \text{ rpm}$; $t_{oil} = 122^{\circ}\text{F} (50^{\circ}\text{C})$


Dynamic response curve


The operating curves are measured mean values taken under test conditions with the unit mounted inside the tank.

Operating conditions: n = 1500 rpm

 $t_{oii} = 122^{\circ}F$ (50°C) Pressure cut-off at 5100 psi (350 bar)

Load steps were obtained by suddenly opening and closing the pressure line with a pressure relief valve as load valve 3.3 ft (1 m) from the output flange of the pump.

Port connections

R Pressure port

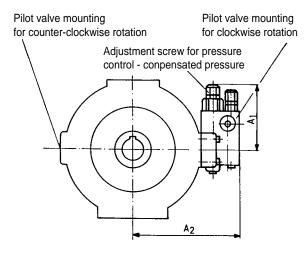
Suction port

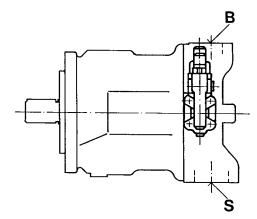
L/L, Case drain ports (L, plugged at factory)

CAUTION!!

Unloading the compensated pump too fast, e.g. by means of a nondampened directional valve, too low pressure may lead to cavitation under certain inlet conditions. For sizes 28-100 a damping orifice can be fitted in the control to slow down the onstroke time of the pump. For the size 140, an adjustable stroke limiter on the compensator spool is available for this purpose. Consult factory for details.

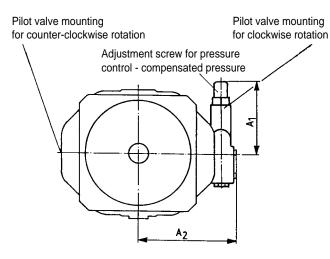
Technical data

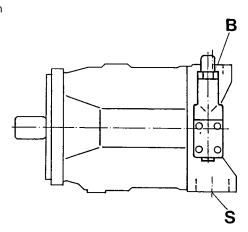

Hysteresis and pressure rise Δp____ ____ max. 60 psi (4 bar) External pilot oil usage _____ max. 0.8 gpm (3 L/min) Loss of flow at Q_{max} see page 7 and 8.


Response time

Size	t _{sA} (ms) against 725 psi (50 bar)	t _{sA} (ms) against 3200 psi (220 bar)	t _{SE} (ms) zero stroke 4000 psi (280 bar)
28	60	30	20
45	80	40	20
71	100	50	25
100	125	90	30
140	130	110	30

DR Constant pressure control – pressure compensation


Unit dimensions - Sizes 28 to 100



In sizes 28 to 100, the DFR valve is used in which the flow control is blocked at the factory and not tested.

Unit dimensions - Size 140

Size	\mathbf{A}_1	A_2	
28	4.11 (105)	5.35 (135.5)	
45	4.11 (105)	5.75 (145.5)	
71	4.11 (105)	6.30 (159.5)	
100	4.11 (105)	6.50 (164.5)	
140	4.92 (125)	6.65 (169)	

DRG Remote constant pressure control

Function and equipment is the same as for model DR.

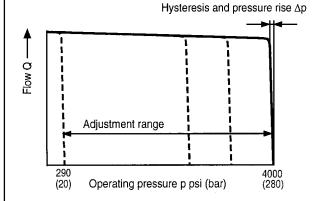
Remote control is possible via a relief valve connected to port X. The relief valve is not included in the supply , and should be ordered separately.

The pressure differential at the pilot valve is set at 290 $\,$ psi (20 bar) and then requires a pilot flow of 0.40 $\,$ gpm (1.5 $\,$ L/min).

If a different pressure differential is required, in the range 145 to 320 psi (10 - 22 bar), please state this in clear text.

As pressure relief valve we recommend:

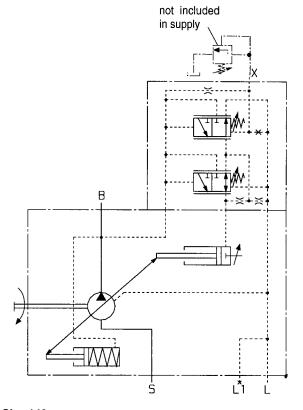
DBDH-6 hydraulic (RA 25 402);

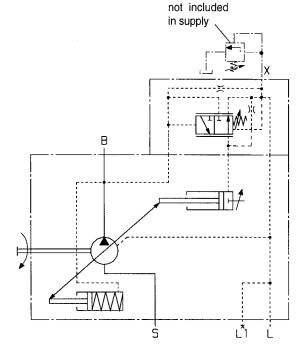

DBET-5X electrical (RA 29 165) or

DBETR-SO 381 with orifice 0.03 inches dia. (Ø 0.8 mm) electrical (RA 29 166).

The interconnecting line between the reliefvalve and port X should not exceed 6 ft. (2m).

Static operating curve

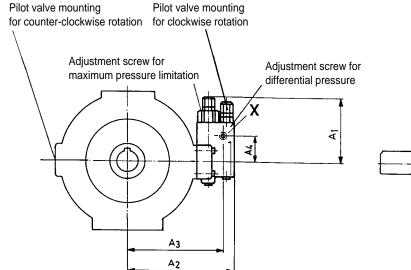

at $n_1 = 1500 \text{ rpm}$; $t_{oil} = 122^{\circ}\text{F} (50^{\circ}\text{C})$

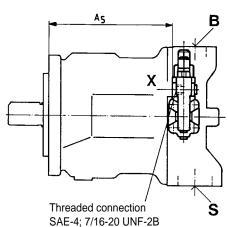

Technical data

Hysteresis and pressure rise Δp _____ max. 60 psi (4 bar) External pilot oil usage _____ 1.2 gpm (4.5 L/min) Loss of flow at Q_{max} see page 7 and 8.

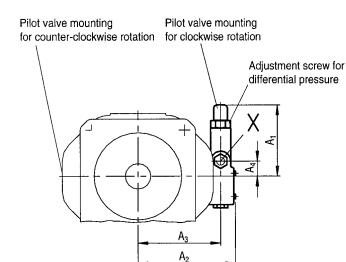
Size 140

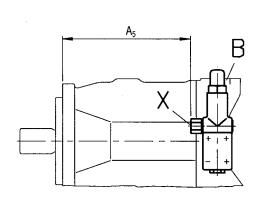
Port connections


- B Pressure port
- S Suction port


L/L, Case drain ports (L, plugged at factory)

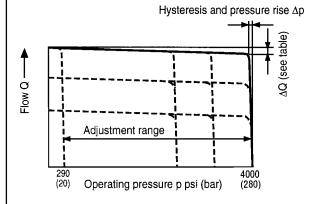
X Pilot pressure port


DRG Remote constant pressure control

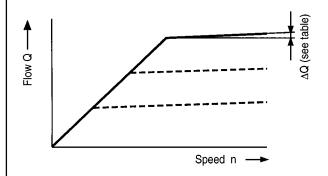

Unit dimensions - Sizes 28 to 100

Unit dimensions - Size 140

Size	$\mathbf{A}_{_{1}}$	$\mathbf{A_2}$	A_3	A_4	A_{5}	Port X
28	4.13 (105)	5.35 (136)	4.69 (119)	1.57 (40)	5.55 (141)	SAE-4; 7/16 - 20 UNF - 2B; deep 0.47 (12)
45	4.13 (105)	5.75 (146)	5.08 (129)	1.57 (40)	6.14 (156)	SAE-4; 7/16 - 20 UNF - 2B; deep 0.47 (12)
71	4.13 (105)	6.30 (160)	5.63 (143)	1.57 (40)	7.24 (184)	SAE-4; 7/16 - 20 UNF - 2B; deep 0.47 (12)
100	4.13 (105)	6.50 (165)	5.83 (148)	1.57 (40)	9.88 (251)	SAE-4; 7/16 - 20 UNF - 2B; deep 0.47 (12)
140	4.92 (125)	8.23 (209)	7.20 (183)	1.02 (26)	8.74 (222)	SAE-6; 9/16 - 18 UNF - 2B; deep 0.51 (13)

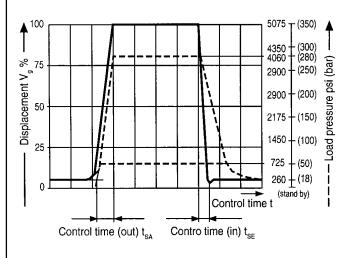

DFR1/DFR Pressure/flow – Load sense control

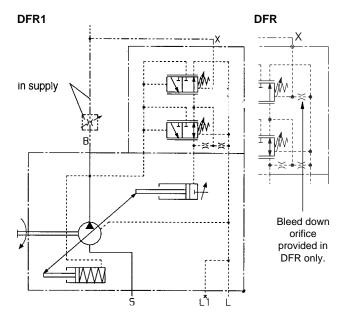
In addition to the function of the constant pressure control, the pump flow may be regulated by means of a differential pressure (e.g. a throttle) installed in the service line; load sensing.


In model DFR, a bleed down orifice is provided to vent trapped pressure in the load-sense line.

Static operating curve

at $n_1 = 1500 \text{ rpm}$; $t_{oil} = 122^{\circ}\text{F} (50^{\circ}\text{C})$




Static operating curve at variable speed

Dynamic operating curves for flow control

These values are average values obtained under test conditions with the unit mounted inside the tank.

Port connections

- B Pressure port
- S Suction port
- L/L, Case drain ports (L, plugged at factory)
- X Pilot pressure, load sense, port

Differential pressure Δp

May be set between 145 and 320 psi (10 and 22 bar)

Standard setting: 200 psi (14 bar). If different setting is required, please state in clear text.

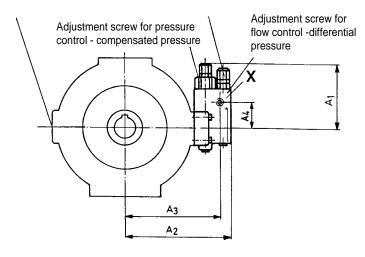
When port X is unloaded to tank, a zero stroke pressure of 260 ± 30 psi (18 ± 2 bar) results (stand-by).

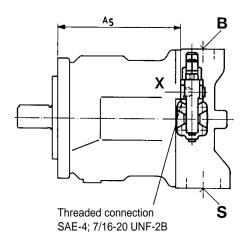
Technical data

(Hysteresis and increase) measured at drive speed n = 1500 rpm

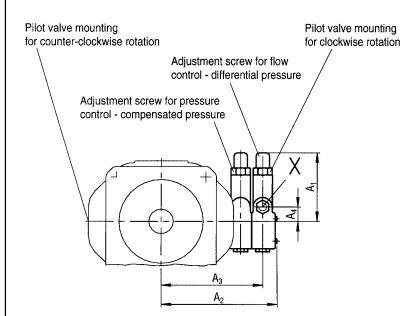
Size	28	45	71	100	140
ΔQ gpm	0.32	0.58	0.90	1.27	1.90
(L/min)	(1)	(1.8)	(2.8)	(4)	(6.0)

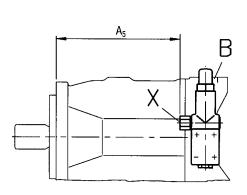
Hysteresis and pressure rise Δp ——max. 60 psi (4 bar) External pilot oil usage DFR max. 0.8...1.2 gpm (3...4.5 L/min) External pilot oil usage DFR 1 — max. 0.8 gpm (3 L/min) Loss of flow at Q_{max} see page 7 and 8.


Size	t _{sA} (ms) stand by - 4000 psi (280 bar)	t _{SE} (ms) 4000 psi (280 bar) - stand by	t _{se} 725 psi (50 bar) - stand by
28	40	20	40
45	50	25	50
71	60	30	60
100	120	60	120
140	130	60	130

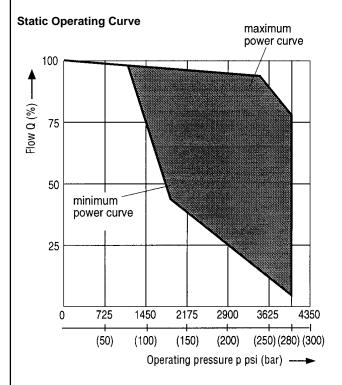

DFR1/DFR Pressure/flow control

Unit dimensions - Sizes 28 to 100


Pilot valve mounting for counter-clockwise rotation


Pilot valve mounting for clockwise rotation

Unit dimensions - Size 140



Size	$\mathbf{A}_{_{1}}$	\mathbf{A}_{2}	A_3	A_4	A_{5}	Port X
28	4.13 (105)	5.35 (136)	4.69 (119)	1.57 (40)	5.55 (141)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
45	4.13 (105)	5.75 (146)	5.08 (129)	1.57 (40)	6.14 (156)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
71	4.13 (105)	6.30 (160)	5.63 (143)	1.57 (40)	7.24 (184)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
100	4.13 (105)	6.50 (165)	5.83 (148)	1.57 (40)	9.88 (251)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
140	4.92 125	8.23 (209)	7.20 (183)	1.02 (26)	8.74 (222)	SAE-6, 9/16 - 18 UNF - 2B; deep 0.51 (13)

DFLR Constant pressure/flow/power control

In order to achieve a constant drive torque with a varying operating pressure, the swivel angle and with it the output flow of the axial piston pump is varied so that the product of flow and pressure remains constant.

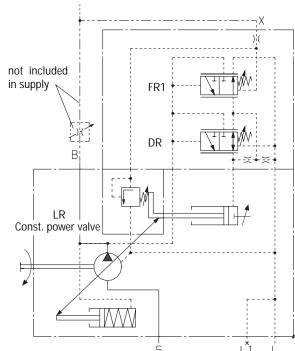
Constant flow control is possible below the power curve.

Please state required power characteristic in clear text when ordering, e.g. 8 HP at 1800 rpm.

When port X is unloaded to tank, a zero stroke pressure of 260 ± 30 psi (18 ± 2 bar) results (stand-by).

Max. 1.45 gpm (5.5 L/min) pilot oil is required.

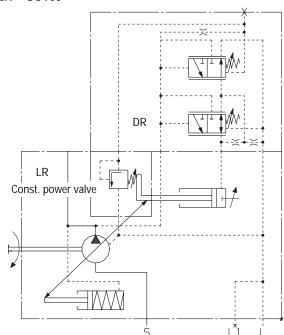
Technical data


Start of control ______ from 1160 psi (80 bar) External pilot oil usage _____ max. 1.45 gpm (5.5 L/min) Loss of flow at Q_{max} see page 7 and 8.

DFLR -- SO160 Constant pressure and power control

With this version of the DFLR control, the flow control function is eliminated. This is used when only pressure and horsepower control is required. It eliminates the need for an external pilot line from the pressure port. In the FR spool an orifice is fitted to feed the LR control valve. The X port is plugged.

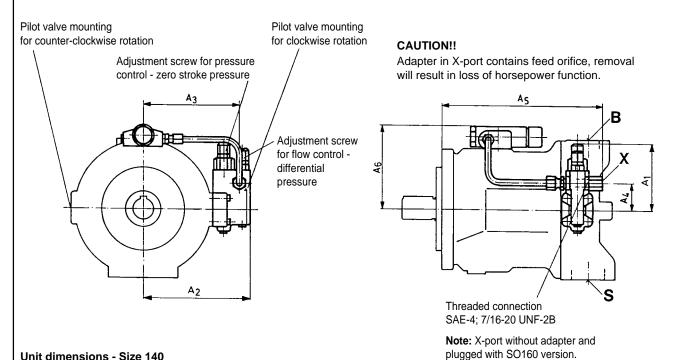
The X-port may be used for remote pressure control similar to the DRG control.


DFLR

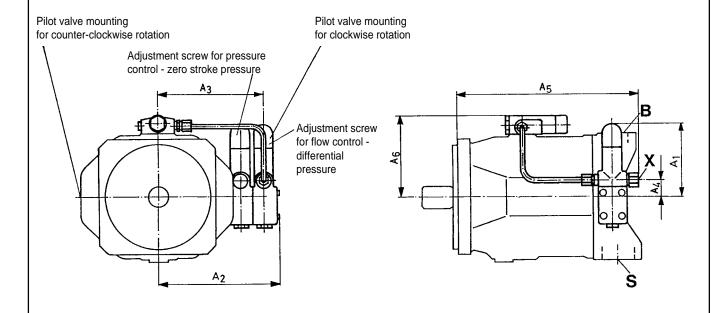
Port connections

- B Pressure port
- S Suction port
- L/L, Case drain ports (L, plugged at factory)
- X Pilot pressure port

DFLR -- SO160



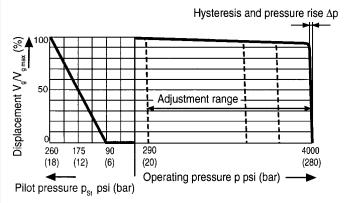
Port connections

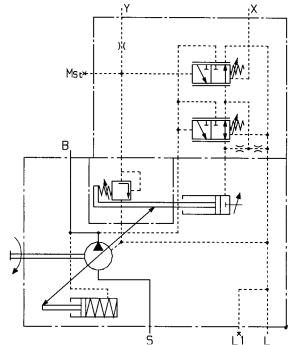

- B Pressure port
- S Suction port
- L/L, Case drain ports (L, plugged at factory)
- X Pilot pressure port (plugged)

DFLR Constant pressure/flow/power control

Unit dimensions - Sizes 28 to 140

Unit dimensions - Size 140




Size	\mathbf{A}_{1}	\mathbf{A}_{2}	A_3	A_4	A_5	A_6	Port X
28	4.13 (105)	5.35 (136)	4.69 (119)	1.57 (40)	6.77 (172)	4.19 (106.5)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
45	4.13 (105)	5.75 (146)	5.08 (129)	1.57 (40)	7.36 (187)	4.41 (112)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
71	4.13 (105)	6.30 (160)	5.63 (143)	1.57 (40)	8.46 (215)	4.96 (126)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
100	4.13 (105)	6.50 (165)	5.83 (148)	1.57 (40)	11.10 (282)	5.08 (129)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)
140	4.92 (125)	8.23 (209)	7.20 (183)	1.02 (26)	12.36 (314)	5.49 (139.5)	SAE-6, 9/16 - 18 UNF - 2B; deep 0.51 (13)

FHD flow control, pilot pressure dependent with pressure control

The swivel angle of the pump and therefore its displacement is dependent upon the pilot pressure present in port X.

A constant pressure of 510 psi (35 bar) must be applied to port Y. The integral pressure control is infinitely adjustable. (State set value required in clear text).

Technical data

Hysteresis \pm 2 % of V $_{\rm g\;max}$

External pilot oil usage at Y max. 0.8...1.2 gpm (3...4.5 L/min)

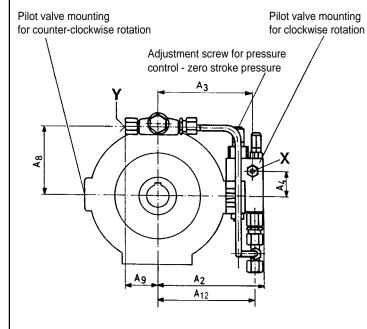
Pressure rise Δp max. 60 psi (4 bar)

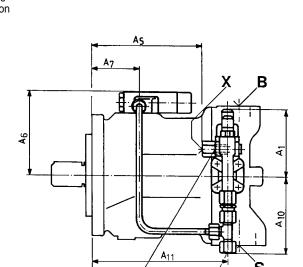
Loss of flow at Q_{max} see page 7 and 8.

Port connections

B Pressure port

S Suction port


L/L, Case drain ports (L, plugged at factory)


X Pilot pressure port

M_{st} Measuring port

FHD flow control, pilot pressure dependent with pressure control

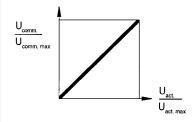
Unit dimensions - Sizes 28 to 140

Threaded connection SAE-4; 7/16-20 UNF-2B

Size	\mathbf{A}_{1}	A_2	A_3	A_4	A_5	A_6	A ₇	A_8	A_9
28	4.13 (105)	5.33 (135.5)	4.69 (119)	1.57 (40)	4.69 (119)	4.19 (106.5)	1.89 (48)	3.39 (86)	1.89 (48)
45	4.13 (105)	5.73 (145.5)	5.08 (129)	1.57 (40)	5.28 (134)	4.41 (112)	2.12 (54)	3.60 (91.5)	1.89 (48)
71	4.13 (105)	6.28 (159.5)	5.63 (143)	1.57 (40)	6.38 (162)	4.88 (124)	2.72 (69)	4.07 (103.5)	1.89 (48)
100	4.13 (105)	6.48 (164.5)	5.83 (148)	1.57 (40)	9.02 (229)	5.08 (129)	4.37 (111)	4.27 (108.5)	1.89 (48)
140	4.92 (125)	8.22 (209)	7.20 (183)	1.02 (26)	9.61 (244)	5.49 (139.5)	3.9 (99)	4.69 (119)	1.89 (48)

Size	A ₁₀	A ₁₁	A ₁₂	Port X, Y	M_{St}
28	4.45 (113)	6.22 (158)	4.88 (124)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)	Pipe ø8x1.5 mm DIN 2391
45	4.45 (113)	6.81 (173)	5.28 (134)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)	Pipe ø8x1.5 mm DIN 2391
71	4.45 (113)	7.91 (201)	5.83 (148)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)	Pipe ø8x1.5 mm DIN 2391
100	4.45 (113)	10.55 (268)	6.02 (153)	SAE-4, 7/16 - 20 UNF - 2B; deep 0.39 (10)	Pipe ø8x1.5 mm DIN 2391
140	5.91 (150)	10.55 (268)	7.20 (183)	SAE-6; 9/16 - 18 UNF - 2B; deep 0.51 (13)	Pipe ø8x1.5 mm DIN 2391
					<u> </u>

FE1 Electrical flow control

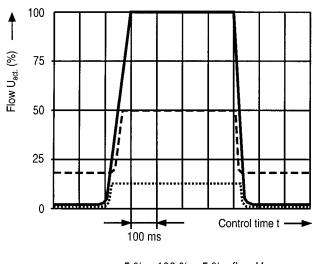

The pump displacement is controlled via an electrically operated proportional valve.

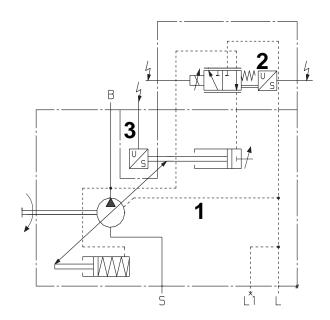
Flow control is achieved by means of the variable swivel angle of the pump, possible variations in drive speed (e. g. diesel engine speeds) are not taken into consideration.

Swivel angle of the pump is fed back via an inductive positional transducer to amplifier card VT 5041-2X / 10V or amplifier VT 13945A (see RA 30 022).

The amplifier card / amplifier modul is used to control pump flow and must be ordered separately.

Static operating curve




Dynamic operating curves

Displacement/time characteristics

measured: AA10VSO 45 FE1

stepped pressure signal value against 725 psi (50 bar), pressure relief valve

Port connections

- B Pressure port
- S Suction port
- L/L, Case drain ports (L, plugged at factory)

Modular elements

- 1 AA10VSO with hydraulic control device
- 2 Control valve STW 063-1X
- 3 Inductive positional transducer IW9-03-01

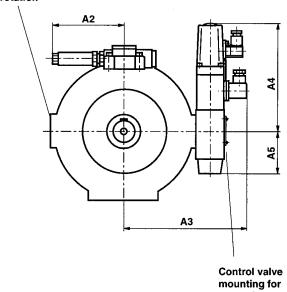
Technical data

Min. required positioning pressure	290 psi (20 bar)
External pilot oil usage at Y	max. 0.66 gpm (2.5 L/min)
Hysteresis	$\leq \pm 0.2 \%$ of V _{g max} $\leq \pm 0.2 \%$
Repeatability	≤± 0.2 %
Loss of flow at Q_{max} see page 7 and 8	i.

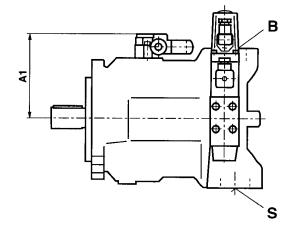
Control valve:

Control valve.	
Current type	DC
Nominal voltage	24 V
Coil resistance at 20°C	2 Ω
Duty (operating time)	100 %
Ambient temperature	122°F (50°C)
Coil temperature	300°F (150°C)
Insulation to DIN 40050	IP 65
Insulation class to VDE 0580	F

Inductive positional transducer (swivel angle):


Carrier frequency ______ 1000 Hz...5000 Hz Inductivity _____ 9.5 mH

FE1 Electrical flow control


Unit dimensions - Sizes 28 to 140

Size 28 to 140

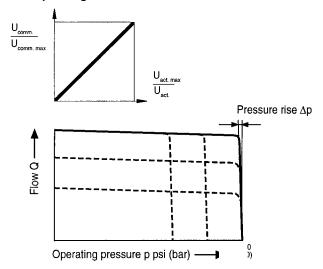
Control valve mounting for anticlockwise direction of rotation

clockwise direction of rotation

	A_{5}	A_4	A_3	\mathbf{A}_{2}	$\mathbf{A}_{\scriptscriptstyle{1}}$	Size
	2.48 (63)	6.22 (158)	6.70 (171)	4.20 (107)	4.17 (106)	28
	2.48 (63)	6.22 (158)	7.23 (181)	4.20 (101)	4.41 (112)	45
	2.48 (63)	6.22 (158)	7.68 (195)	4.20 (107)	4.88 (124)	71
	2.48 (63)	6.22 (158)	7.87 (200)	4.20 (107)	5.08 (129)	100
	3.07 (78)	5.63 (143)	9.37 (238)	4.20 (1070	5.51 (140)	140
	- ()	(,	, ,		(- /	

FE1D Electrical flow control with pressure control

The output flow of the pump is controlled via an electrically operated proportional valve.

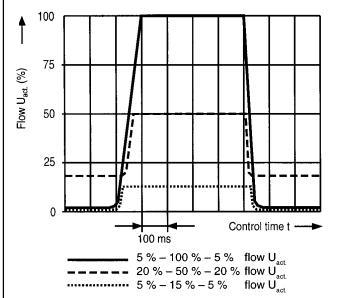

Control of output flow is achieved by means of the variable swivel angle of the pump, possible variations in drive speed (e. g. diesel engine speeds) are not taken into consideration.

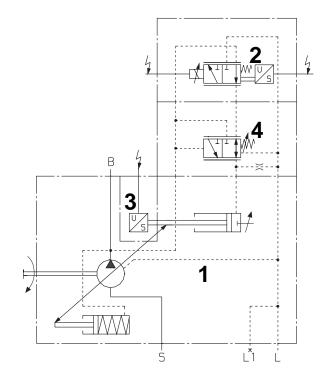
Swivel angle of the pump is fed back via an inductive positional transducer to amplifier card VT 13945 (see RA 30 022) or amplifier module VT 5041-2X / 10V.

The amplifier card / amplifier modul is used to control pump flow and must be ordered separately.

As opposed to the FE1, this control is fitted with an additional sandwich valve (item 4) so as to give a supplementary hydraulic pressure control facility.

Static operating curve




Dynamic operating curves

Displacement/time characteristics

measured: AA10VSO 45 FE

stepped pressure signal value against 725 psi (50 bar), pressure relief valve

Port connections

- B Pressure port
- S Suction port
- L/L, Case drain ports (L, plugged at factory)

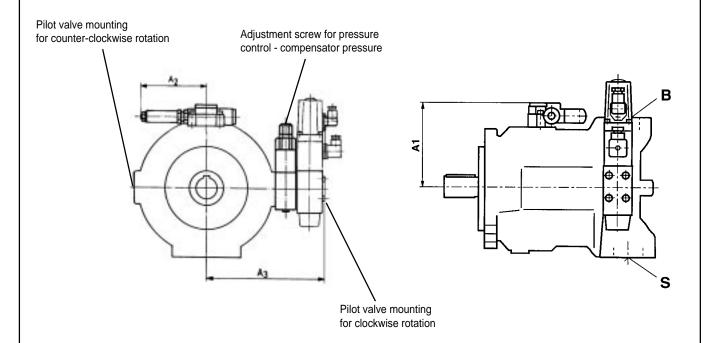
Modular elements

- 1 AA10VSO with hydraulic control device
- 2 Control valve STW 063-1X
- 3 Inductive positional transducer IW9-03-01
- 4 Sandwich plate valve

Technical data

Min. required positioning pressure	290 psi (20 bar)
External pilot oil usage at Y	max. 0.8 gpm (3 L/min)
Δp Pressure rise	max. 60 psi (4 bar)
Hysteresis	$_{\rm max} \le 0.2 \% \text{ of V}_{\rm g max}$
Repeatability	≤± 0.2 %
Loss of flow at Q_{max} see page 7 and 8.	

Control valve:


Control valve.	
Current type	DC
Nominal voltage	
Coil resistance at 20°C	2 Ω
Duty (operating time)	100 %
Ambient temperature	122°F (50°C)
Coil temperature	300°F (150°C)
Insulation to DIN 40050	IP 65
Insulation class to VDE 0580	F

Inductive positional transducer:

Carrier frequency	1000 Hz5000 Hz
Inductivity	9.5 mH

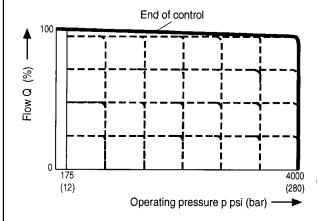
FE1D Electrical flow control with pressure control

Unit dimensions - Sizes 28 to 140

Size	$\mathbf{A}_{_{1}}$	\mathbf{A}_{2}	A_3	A_4	A_5
28	4.17 (106)	4.20 (107)	8.11 (206)	6.22 (158)	2.48 (63)
45	4.41 (112)	4.20 (101)	8.50 (216)	6.22 (158)	2.48 (63)
71	4.88 (124)	4.20 (107)	9.06 (230)	6.22 (158)	2.48 (63)
100	5.08 (129)	4.20 (107)	9.25 (235)	6.22 (158)	2.48 (63)
140	5.51 (140)	4.20 (1070	10.75 (273)	5.63 (143)	3.07 (78)

DFE1 Electronic pressure and flow control

The pressure and output flow of the pump are controlled electronically by means of a proportional valve. The output flow is controlled by changing the swivel angle of the pump. Variations in pump speed – e.g. with a diesel engine drive – are not corrected. The pump pressure and position are fed back via a pressure sensor and inductive positional transducer transducer to the amplifier card which is necessary to the control.

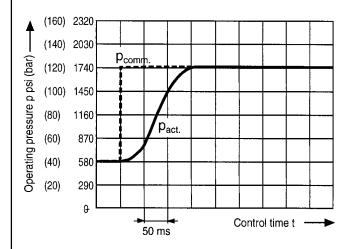

DFE1 pump model is suitable for controlling with the VT 5041 analog amplifier card.

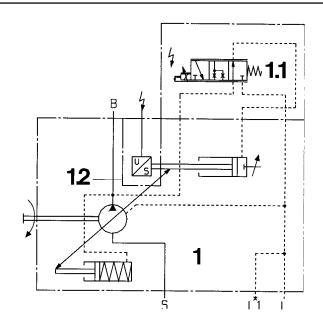
Amplifier card VT 5041 (RA 30 022) and pressure transducer ST (RA 30 022) are to be ordered separately.

On safety grounds, a pressure relief valve must be installed in addition to the pressure control system. It is used to ensure that the maximum pressure is not exceeded.

For additional information and applications, see RA 30 022.

Static operating curves



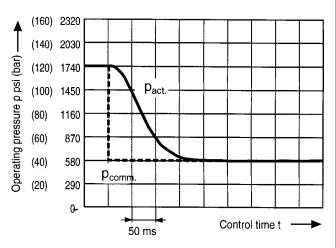

Technical data

Hysteresis	$_{\rm max}$ < 0.2 % of $V_{\rm q max}$
Repeatability	< 0.2 %
External pilot oil usage	max. 0.66 gpm (2.5 L/min)
Loss of flow at Q _{max} see page 7 ar	nd 8.

Dynamic operating curves

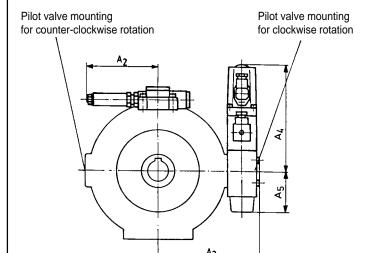
Stepped pressure signal value e.g. 580 to 1740 psi (40 to 120 bar) DFE1 45 with compressed fluid volumne 1.3 gal (5 L).

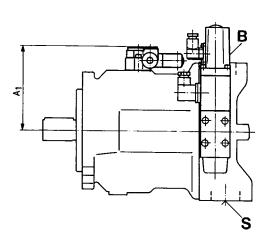
Port connections


- B Pressure port
- S Suction port
- L/L, Case drain ports (L, plugged at factory)

Modular elements

- 1 AA10VSO with hydraulic control device
- 1.1 Proportional valve
- 1.2 Inductive positional transducer


Pressure sensor and control electonics sold separately (please order seperately, according to RA 30 022)


Stepped pressure signal value e.g. 1740 to 580 psi (120 to 40 bar) DFE1 45 with compressed fluid volumne 1.3 gal (5 L).

DFE1 Electronic pressure and flow control

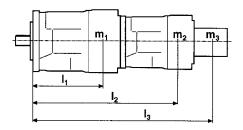
Unit dimensions - Sizes 28 to 140

Size	$\mathbf{A}_{_{1}}$	A_2	$\mathbf{A}_{_3}$	A_4	A_5
28	4.09 (106)	4.19 (106.5)	6.71 (170.5)	6.22 (158)	2.48 (63)
45	4.29 (112)	4.19 (106.5)	7.11 (180.5)	6.22 (158)	2.48 (63)
71	4.76 (124)	4.19 (106.5)	7.66 (194.5)	6.22 (158)	2.48 (63)
100	4.96 (129)	4.19 (106.5)	7.85 (199.5)	6.22 (158)	2.48 (63)
140	5.51 (139.5)	4.19 (106.5)	9.35 (237.5)	5.63 (143)	3.07 (78)

Through drive

Axial piston unit AA10VSO is available with a through drive, as shown in the ordering code on page 3. The type of through drive is determined by the codes K....

included in supply are:


hub, fixing screws, seals and an intermediate flange (if required).

Combination pumps

Two or more independent circuits are available to the user when combination pumps are used.

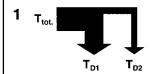
- If the combination pump consists of 2 units and if it is supposed to be deliverd as an assembled unit, the two ordering codes have to be combined with the "+" symbol. Ordering example:
 - AA10VSO 71 DR/31 R-PKC62K03 + AA10VSO 28 DR/31 R-PKC62N00
- If a gear pump or radial piston pump is to be mounted at the factory, RA 90 139 should be consulted. It lists the possible mounted pump combinations with ordering codes of the first pump.

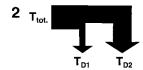
Permissible bending torques

 m_1, m_2, m_3 [lbs] l_1, l_2, l_3 [in]

Weight of pumps Center to center distance

$$T_m = (m_1 \cdot l_1 + m_2 \cdot l_2 + m_3 \cdot l_3) \cdot \frac{1}{12} [Nm]$$

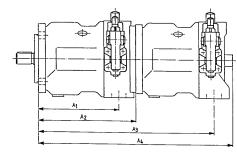

 $m_1, m_2, m_3 \text{ [kg]}$ $l_1, l_2, l_3 \text{ [mm]}$


Weight of pumps
Center to center distance

$$T_m = (m_1 \cdot l_1 + m_2 \cdot l_2 + m_3 \cdot l_3) \cdot \frac{1}{102} [Nm]$$

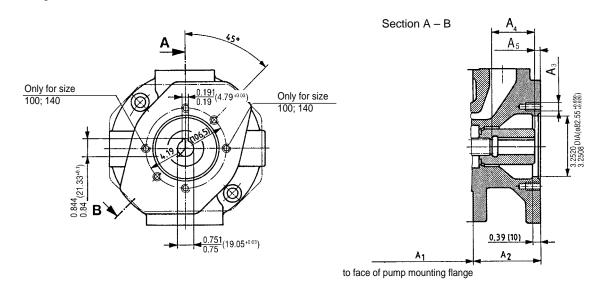
Sizes			28	45	71	100	140
Max. bending moment	T _m	lb-ft (Nm)	65 (88)	101 (137)	159 (216)	221 (300)	332 (450)
Weight (Mass)	m	lbs (kg)	33 (15)	46 (21)	73 (33)	99 (45)	132 (60)
Distance to center of gravity	I ₁	in (mm)	4.3 (110)	5.11 (130)	6.0 (150)	6.3 (160)	6.3 (160)

Permissible through-drive torque

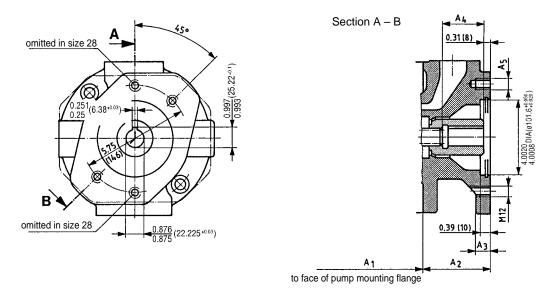

Sizes	:			28	45	71	100	140
Max. permissible through-drive torque at drive shaft "K" pump 1								
(Pum	ip 1 + pump 2)	Ü	lb-ft (Nm)	115 (156)	184 (249)	289 (392)	456 (618)	639 (867)
1	Permissible through-drive torque	T _{D1max}	lb-ft (Nm)	92 (125)	148 (200)	233 (316)	328 (445)	460 (623)
		T _{D2max}	lb-ft (Nm)	23 (31)	36 (49)	56 (76)	128 (173)	180 (244)
2	Permissible throughdrive torque	T_{D1max}	lb-ft (Nm)	23 (31)	36 (49)	56 (76)	128 (173)	180 (244)
2		T _{D2max}	lb-ft (Nm)	92 (125)	148 (200)	233 (316)	328 (445)	460 (623)
Max. permissible through-drive torque at drive shaft "R" pump 1								
(Pum	p 1 + pump 2)	•	lb-ft (Nm)	164 (223)	184 (400)	466 (632)	_	_

(ruiii)) 1 + pullip 2)		(Nm)	(223)	(400)	(632)	_	_	
4	Permissible through-drive torque	T_{D1max}	lb-ft (Nm)	92 (125)	147 (200)	233 (316)	_	_	
		T _{D2max}	lb-ft (Nm)	72 (98)	147 (200)	233 (316)	_	_	
2	Permissible	T_{D1max}	lb-ft (Nm)	72 (98)	147 (200)	233 (316)	_	_	
2	through- drive torque	T _{D2max}	lb-ft (Nm)	92 (125)	147 (200)	233 (316)	_	_	

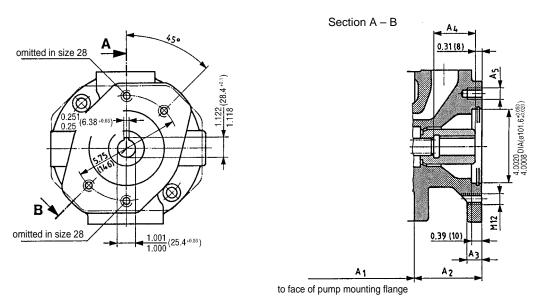
Unit dimensions of combination pumps


AA10VSO + AA10VSO

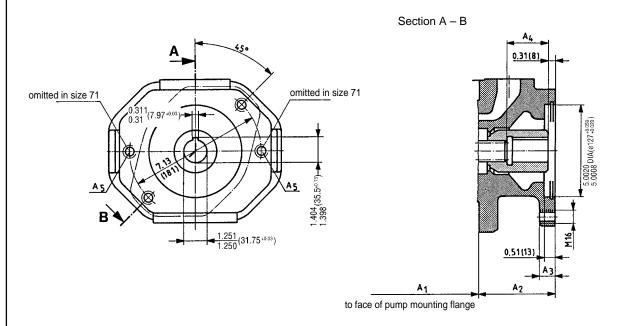
Main pump	AA10VSO 28						
2nd pump	$\mathbf{A}_{_{1}}$	A ₂	A ₃	A ₄			
AA10VSO 18	6.46 (164)	8.03 (204)	13.74 (349)	15.71 (399)			
AA10VSO 28	6.46 (164)	8.03 (204)	14.49 (368)	16.14 (410)			
AA10VSO 45	-	-	-	-			
AA10VSO 71	-	-	-	-			
AA10VSO 100	-	-	-	-			
AA10VSO 140	-	-	-	-			


Main pump		AA10V	SO 45			AA10V	/S0 71			AA10V	SO 100			AA4VS	0 140	
2nd pump	$\mathbf{A}_{_{1}}$	\mathbf{A}_2	A_3	A ₄	A ₁	A ₂	A_3	A_4	A ₁	A ₂	A_3	A ₄	A ₁	A ₂	A_3	A ₄
AA10VSO 18	7.24 (184)	9.02 (229)	14.72 (374)	16.69 (424)	8.54 (217)	10.51 (267)	16.22 (412)	18.19 (462)	10.83 (275)	13.31 (338)	19.02 (483)	20.98 (533)	10.83 (275)	13.78 (350)	19.49 (495)	21.46 (545)
AA10VSO 28	7.24 (184)	9.02 (229)	15.47 (393)	17.13 (435)	8.54 (217)	10.51 (267)	16.97 (431)	18.62 (473)	10.83 (275)	13.31 (338)	19.76 (502)	21.42 (544)	10.83 (275)	13.78 (350)	20.24 (514)	21.89 (556)
AA10VSO 45	7.24 (184)	9.02 (229)	16.26 (413)	17.83 (453)	8.54 (217)	10.51 (267)	17.76 (451)	19.33 (491)	10.83 (275)	13.31 (338)	20.55 (522)	22.13 (562)	10.83 (275)	13.78 (350)	21.02 (534)	22.60 (574)
AA10VSO 71	-	-	-	-	8.54 (217)	10.51 (267)	19.06 (484)	20.62 (524)	10.83 (275)	13.31 (338)	21.85 (555)	23.43 (595)	10.83 (275)	13.78 (350)	22.32 (567)	23.90 (607)
AA10VSO 100	-	-	-	-	-	-	-	-	10.83 (275)	14.02 (356)	24.84 (631)	26.85 (682)	10.83 (275)	14.49 (368)	25.31 (643)	27.32 (694)
AA10VSO 140	-	-	-	-	-	-	-	-	-	-	-	-	10.83 (275)	14.49 (368)	25.31 (643)	27.76 (705)

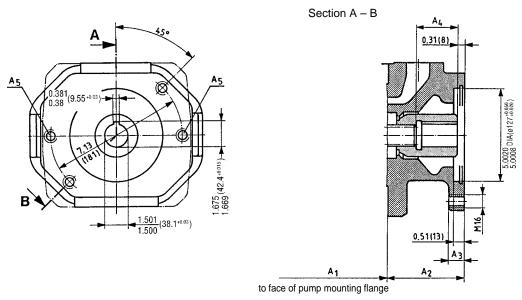
Flange SAE A 2-bolt, for mounting of axial piston pump A10VSO 18 – keyed shaft K Ordering code K 40


Size of main pump	$\mathbf{A}_{_{1}}$	\mathbf{A}_{2}	A_3	A_4	A_5
28	5.28 (134)	2.76 (70)	M10; deep 0.63 (16)	1.50 (38)	0.35 (9)
45	5.87 (149)	3.15 (80)	M10; deep 0.63 (16)	1.69 (43)	0.39 (10)
71	6.97 (177)	3.54 (90)	M10; deep 0.79 (20)	2.05 (52)	0.35 (9)
100	9.17 (233)	4.13 (105)	M10; deep 0.79 (20)	2.20 (56)	0.35 (9)
140	9.17 (233)	4.61 (117)	M10; deep 0.79 (20)	2.68 (68)	0.35 (9)

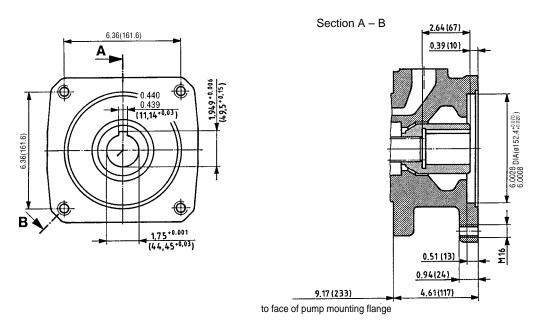
Flange SAE B 2-bolt, for mounting of axial piston pump AA10VSO 28 – keyed shaft K Ordering code K $\bf 03$


Size of main pump	\mathbf{A}_{1}	A_2	A_3	A_4	A_5
28	5.28 (134)	2.76 (70)	0.59 (15)	1.53 (39)	M12;deep 0.59 (15)
45	5.87 (149)	3.15 (80)	0.55 (14)	1.77 (45)	M12;deep 0.71 (18)
71	6.97 (177)	3.54 (90)	0.71 (18)	2.09 (53)	M12;deep 0.79 (20)
100	9.17 (233)	4.13 (105)	-	2.24 (57)	M12;deep 0.79 (20)
140	9.17 (233)	4.61 (117)	-	2.68 (68)	M12;deep 0.79 (20)

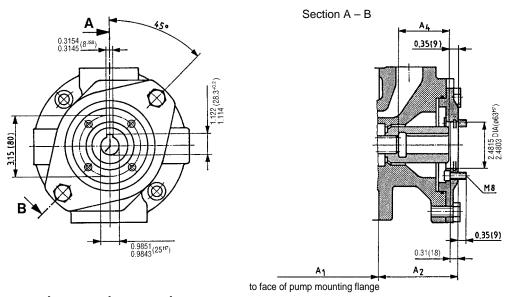
Flange SAE B–B 2-bolt, for mounting of axial piston pump AA10VSO 45 – keyed shaft K Ordering code K 05


Size of main pump	\mathbf{A}_{1}	A_2	A_3	A_4	A ₅
45	5.87 (149)	3.15 (80)	0.55 (14)	1.77 (45)	M12;deep 0.71 (18)
71	6.97 (177)	3.54 (90)	0.71 (18)	2.09 (53)	M12;deep 0.79 (20)
100	9.17 (233)	4.13 (105)	_	2.24 (57)	M12;deep 0.79 (20)
140	9.17 (233)	4.61 (117)	_	2.72 (69)	M12;deep 0.79 (20)

Flange SAE C 2-bolt, for mounting of axial piston pump AA10VSO 71 – keyed shaft K Ordering code K 08

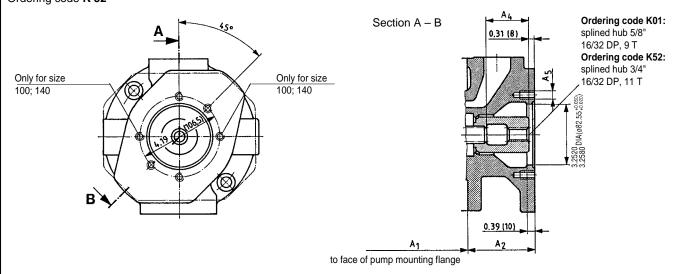

Size of main pump	\mathbf{A}_{1}	A_2	A_3	A_4	A ₅
71	6.97 (177)	3.54 (90)	0.71 (18)	2.09 (53)	M16;deep 0.71 (18)
100	9.17 (233)	4.13 (105)	0.79 (20)	2.24 (57)	M16;deep 0.98 (25)
140	9.17 (233)	4.61 (117)	0.94 (24)	2.68 (68)	M16;deep 0.98 (25)

Flange SAE C 2-bolt, for mounting of axial piston pump AA10VSO 100 – keyed shaft K Ordering code K 38


Size of main pump	\mathbf{A}_{1}	A_2	A_3	A_4	A_5
100	9.17 (233)	4.13 (105)	0.79 (20)	2.24 (57)	M16; deep 0.98 (25)
140	9.17 (233)	4.61 (117)	0.94 (24)	2.72 (69)	M16; deep 1.26 (32)

Flange SAE D 4-bolt, for mounting of axial piston pump AA10VSO 140 – keyed shaft K Ordering code K $\bf 21$

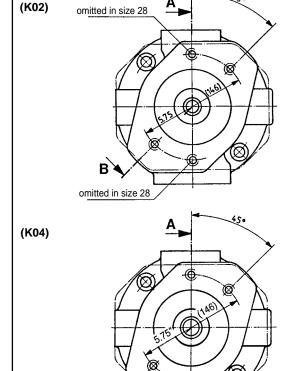
Size of main pump 140

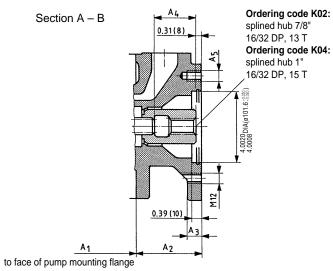

Flange ISO 63 4-bolt metric, for mounting of radial piston pump R4 (see RA 11 263) Ordering code **K 57**

Size of main pump	\mathbf{A}_{1}	A_2	A_4
28	5.28 (134)	3.86 (98)	1.85 (47)
45	5.87 (149)	4.75 (108)	2.81 (71.5)
71	6.97 (177)	4.17 (106)	2.68 (68)
100	9.17 (233)	4.76 (121)	2.78 (70.5)
140	9.17 (233)	5.24 (133)	3.31 (84)

Flange 82-4 (SAE A), 2-bolt, for mounting of gear pump G2 – splined shaft (see RA 10 030) Ordering code K 01

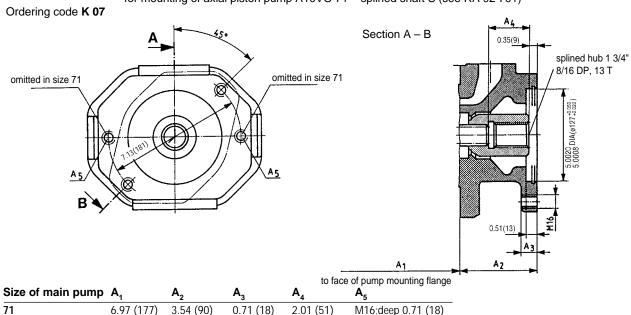
Flange 82-4 (SAE A), 2-bolt, for mounting of axial piston pump A10VSO 18 – splined shaft S (see RA 92 712) Ordering code K 52




np A ₁	A_2	A_4	A_5
5.28 (134)	2.76 (70)	1.50 (38)	M10;deep 0.63 (16)
5.87 (149)	3.15 (80)	1.73 (44)	M10;deep 0.63 (16)
6.97 (177)	3.54 (90)	2.05 (52)	M10;deep 0.79 (20)
9.17 (233)	4.13 (105)	2.20 (56)	M10;deep 0.79 (20)
9.17 (233)	4.61 (117)	2.68 (68)	M10;deep 0.79 (20)
	5.28 (134) 5.87 (149) 6.97 (177) 9.17 (233)	5.28 (134) 2.76 (70) 5.87 (149) 3.15 (80) 6.97 (177) 3.54 (90) 9.17 (233) 4.13 (105)	5.28 (134) 2.76 (70) 1.50 (38) 5.87 (149) 3.15 (80) 1.73 (44) 6.97 (177) 3.54 (90) 2.05 (52) 9.17 (233) 4.13 (105) 2.20 (56)

Flange 101-2 (SAE B), 2-bolt, for mounting of gear pump G3 – splined shaft (see RA 10 039) or for mounting of axial piston pump A10VO 28 (see RA 92 701)

Ordering code K 02


Flange 101-2 (SAE B), 2-bolt, for mounting of axial piston pump A10VO 45 – splined shaft (see RA 92 701) Ordering code K 04

Size of main pump A 5.28 (134) 2.76 (70) 0.59 (15) 1.50 (38) 45 5.87 (149) 3.15 (80) 0.55 (14) 1.73 (44) M12; deep 0.71 (18) 71 M12;deep 0.79 (20) 6.97 (177) 3.54 (90) 0.71 (18) 2.05 (52) 100 9.17 (233) 4.13 (105) 2.20 (56) M12; deep 0.79 (20) M12; deep 0.79 (20) 140 9.17 (233) 4.61 (117) -2.68 (68)

Flange SAE C 2-bolt, for mounting of gear pump G4 – splined shaft (see RA 10 042) or for mounting of axial piston pump A10VO 71 – splined shaft S (see RA 92 701)

2.24 (57)

2.68 (68)

M16; deep 0.98 (25)

M16; deep 0.98 (25)

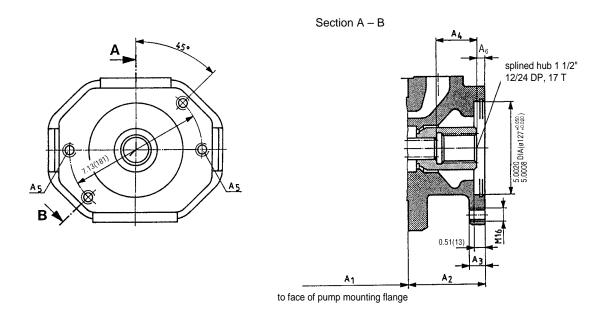
9.17 (233)

9.17 (233)

4.13 (105)

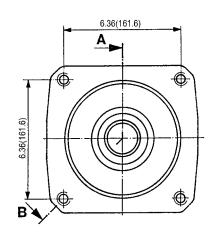
4.61 (117)

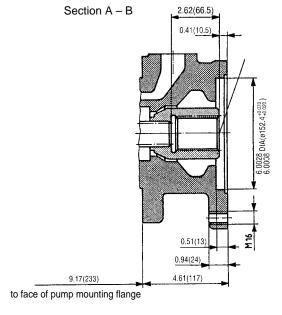
0.79 (20)


0.94 (24)

100

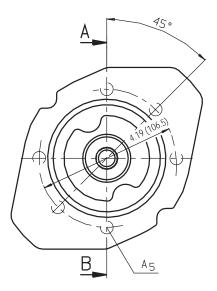
140


Flange SAE C 2-bolt, for mounting of axial piston pump A10VO 100 – splined shaft S (see RA 92 701) or for mounting of gear pump GC6 – splined shaft (see RA 10 215)

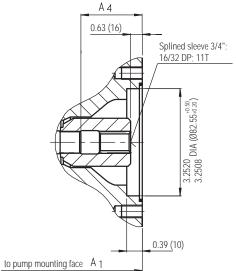

Ordering code K 24

Size of main pump	\mathbf{A}_{1}	A_2	A_3	A_4	A_5	A_6
100	9.17 (233)	4.13 (105)	0.79 (20)	2.56 (65)	M16; deep 0.98 (25)	0.31 (8)
140	9.17 (233)	4.61 (117)	0.94 (24)	2.64 (67)	M16; deep 0.98 (25)	0.39 (10)

Flange SAE D 4-bolt, for mounting of axial piston pump A10VO 140 – splined shaft S (see RA 92 701) Ordering code **K 17**

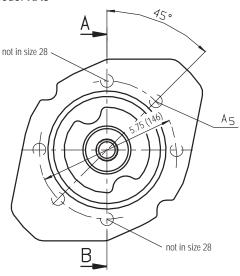


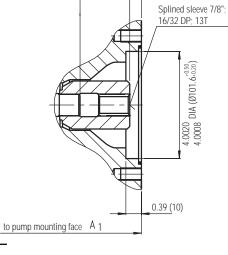
Size of main pump 140


Flange SAE 82-2 (SAE A, 2-hole) for mounting of axial piston pump A10VSO 18 -

drive shaft "R" (see RA 92 712)

Ordering code: KA1


Section A – B



Size	A ₁	A ₄	A ₅ (metric thread)
28	8.03(204)	1.85(47)	M 10; 0.63(16) deep
45	9.02(229)	2.09(53)	M 10; 0.63(16) deep
71	10.51(267)	2.40(61)	M 10; 0.79(20) deep
100	13.31(338)	2.56(65)	M 10; 0.79(20) deep
140	13.78(350)	3.03(77)	M 10; 0.79(20) deep

Flange SAE 101-2 (SAE B, 2-hole) for mounting of fixed vane pump PVV1 or 2 with drive shaft "J" (see RA 10 335) or for mounting of axial piston pump A10VO 28 - drive shaft "R"

Ordering code: KA3

Section A - B

A 4 0.63 (16)

Size	A ₁	A ₄	A ₅ (metric thread)
28	8.03(204)	1.85(47)	M 12; 0.59(15) deep
45	9.02(229)	2.09(53)	M 12; 0.71(18) deep
71	10.51(267)	2.40(61)	M 12; 0.79(20) deep
100	13.31(338)	2.56(65)	M 12; 0.79(20) deep
140	13.78(350)	3.03(77)	M 12; 0.79(20) deep

For size 28, only the fixed vane pump PVV is mounted $45^{\circ}\ turned.$

Flange SAE 101-2 (SAE B, 2-hole) for mounting of axial piston pump A10VO 45 - drive shaft "R" or PVV4 or 5 with drive shaft "J" (see RA 10 335) *)

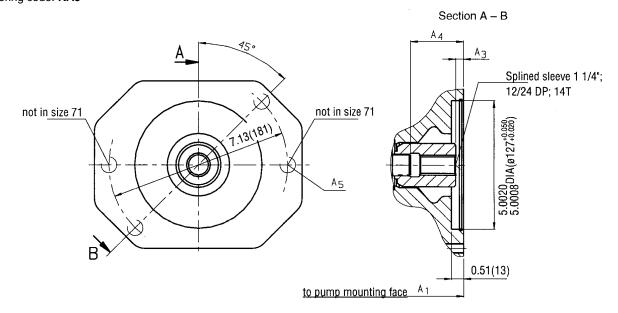
Section A – B

A4

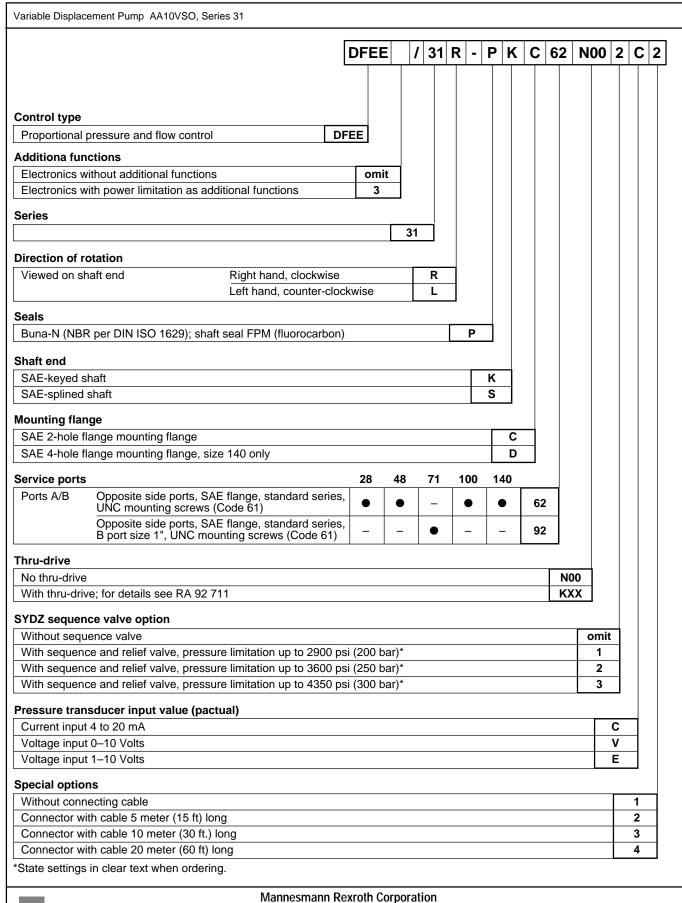
Splined sleeve 1*;
16/32 DP; 15T

0.39(10)

to pump mounting face A1


Size	A ₁	A_3	A_4	A ₅ (metric thread)	
45	9.02(229)	0.63(16)	2.09(53)	M 12; 0.71(18) deep	
71	10.51(267)	0.59(15)	2.40(61)	M 12; 0.79(20) deep	
100	13.31(338)	0.67(17)	2.56(65)	M 12; 0.79(20) deep	

В


*) CAUTION!

A 1.5 mm (1/16") spacer plate is required between vane pump mounting face for size A10VO71.

Flange SAE 127-2 (SAE C, 2-hole) for mounting of axial piston pump A10VO 71 - drive shaft "R" Ordering code: **KA5**

Size	$A_{_1}$	A_3	$\mathbf{A}_{\mathbf{A}}$	A ₅ (metric thread)
71	10.51(267)	0.67(17)	2.40(61)	M 16; 0.71(18) deep
100	13.31(338)	0.59(15)	2.56(65)	M 16; 0.98(25) deep
140	13.78(350)	0.63(16)	3.03(77)	M 16; 1.26(32) deep

Rexroth Hydraulics Div., Industrial, 2315 City Line Road, Bethlehem, PA 18017-2131 Tel. (610) 694-8300 Fax: (610) 694-8467 Rexroth Hydraulics Div., Mobile, 1700 Old Mansfield Road, Wooster, OH 44691-0394 Tel. (330) 263-3400 Fax: (330) 263-3333